docs: networking: move z8530 to the hw driver section
authorJakub Kicinski <kuba@kernel.org>
Fri, 26 Jun 2020 17:27:25 +0000 (10:27 -0700)
committerDavid S. Miller <davem@davemloft.net>
Fri, 26 Jun 2020 23:08:44 +0000 (16:08 -0700)
Move z8530 docs to hamradio and wan subdirectories.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Documentation/networking/device_drivers/hamradio/index.rst [new file with mode: 0644]
Documentation/networking/device_drivers/hamradio/z8530drv.rst [new file with mode: 0644]
Documentation/networking/device_drivers/index.rst
Documentation/networking/device_drivers/wan/index.rst [new file with mode: 0644]
Documentation/networking/device_drivers/wan/z8530book.rst [new file with mode: 0644]
Documentation/networking/index.rst
Documentation/networking/z8530book.rst [deleted file]
Documentation/networking/z8530drv.rst [deleted file]
MAINTAINERS
drivers/net/hamradio/Kconfig
drivers/net/hamradio/scc.c

diff --git a/Documentation/networking/device_drivers/hamradio/index.rst b/Documentation/networking/device_drivers/hamradio/index.rst
new file mode 100644 (file)
index 0000000..df03a5a
--- /dev/null
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+
+Amateur Radio Device Drivers
+============================
+
+Contents:
+
+.. toctree::
+   :maxdepth: 2
+
+   z8530drv
+
+.. only::  subproject and html
+
+   Indices
+   =======
+
+   * :ref:`genindex`
diff --git a/Documentation/networking/device_drivers/hamradio/z8530drv.rst b/Documentation/networking/device_drivers/hamradio/z8530drv.rst
new file mode 100644 (file)
index 0000000..d294276
--- /dev/null
@@ -0,0 +1,686 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+=========================================================
+SCC.C - Linux driver for Z8530 based HDLC cards for AX.25
+=========================================================
+
+
+This is a subset of the documentation. To use this driver you MUST have the
+full package from:
+
+Internet:
+
+    1. ftp://ftp.ccac.rwth-aachen.de/pub/jr/z8530drv-utils_3.0-3.tar.gz
+
+    2. ftp://ftp.pspt.fi/pub/ham/linux/ax25/z8530drv-utils_3.0-3.tar.gz
+
+Please note that the information in this document may be hopelessly outdated.
+A new version of the documentation, along with links to other important
+Linux Kernel AX.25 documentation and programs, is available on
+http://yaina.de/jreuter
+
+Copyright |copy| 1993,2000 by Joerg Reuter DL1BKE <jreuter@yaina.de>
+
+portions Copyright |copy| 1993 Guido ten Dolle PE1NNZ
+
+for the complete copyright notice see >> Copying.Z8530DRV <<
+
+1. Initialization of the driver
+===============================
+
+To use the driver, 3 steps must be performed:
+
+     1. if compiled as module: loading the module
+     2. Setup of hardware, MODEM and KISS parameters with sccinit
+     3. Attach each channel to the Linux kernel AX.25 with "ifconfig"
+
+Unlike the versions below 2.4 this driver is a real network device
+driver. If you want to run xNOS instead of our fine kernel AX.25
+use a 2.x version (available from above sites) or read the
+AX.25-HOWTO on how to emulate a KISS TNC on network device drivers.
+
+
+1.1 Loading the module
+======================
+
+(If you're going to compile the driver as a part of the kernel image,
+ skip this chapter and continue with 1.2)
+
+Before you can use a module, you'll have to load it with::
+
+       insmod scc.o
+
+please read 'man insmod' that comes with module-init-tools.
+
+You should include the insmod in one of the /etc/rc.d/rc.* files,
+and don't forget to insert a call of sccinit after that. It
+will read your /etc/z8530drv.conf.
+
+1.2. /etc/z8530drv.conf
+=======================
+
+To setup all parameters you must run /sbin/sccinit from one
+of your rc.*-files. This has to be done BEFORE you can
+"ifconfig" an interface. Sccinit reads the file /etc/z8530drv.conf
+and sets the hardware, MODEM and KISS parameters. A sample file is
+delivered with this package. Change it to your needs.
+
+The file itself consists of two main sections.
+
+1.2.1 configuration of hardware parameters
+==========================================
+
+The hardware setup section defines the following parameters for each
+Z8530::
+
+    chip    1
+    data_a  0x300                   # data port A
+    ctrl_a  0x304                   # control port A
+    data_b  0x301                   # data port B
+    ctrl_b  0x305                   # control port B
+    irq     5                       # IRQ No. 5
+    pclock  4915200                 # clock
+    board   BAYCOM                  # hardware type
+    escc    no                      # enhanced SCC chip? (8580/85180/85280)
+    vector  0                       # latch for interrupt vector
+    special no                      # address of special function register
+    option  0                       # option to set via sfr
+
+
+chip
+       - this is just a delimiter to make sccinit a bit simpler to
+         program. A parameter has no effect.
+
+data_a
+       - the address of the data port A of this Z8530 (needed)
+ctrl_a
+       - the address of the control port A (needed)
+data_b
+       - the address of the data port B (needed)
+ctrl_b
+       - the address of the control port B (needed)
+
+irq
+       - the used IRQ for this chip. Different chips can use different
+         IRQs or the same. If they share an interrupt, it needs to be
+         specified within one chip-definition only.
+
+pclock  - the clock at the PCLK pin of the Z8530 (option, 4915200 is
+         default), measured in Hertz
+
+board
+       - the "type" of the board:
+
+          =======================  ========
+          SCC type                 value
+          =======================  ========
+          PA0HZP SCC card          PA0HZP
+          EAGLE card               EAGLE
+          PC100 card               PC100
+          PRIMUS-PC (DG9BL) card   PRIMUS
+          BayCom (U)SCC card       BAYCOM
+          =======================  ========
+
+escc
+       - if you want support for ESCC chips (8580, 85180, 85280), set
+         this to "yes" (option, defaults to "no")
+
+vector
+       - address of the vector latch (aka "intack port") for PA0HZP
+         cards. There can be only one vector latch for all chips!
+         (option, defaults to 0)
+
+special
+       - address of the special function register on several cards.
+         (option, defaults to 0)
+
+option  - The value you write into that register (option, default is 0)
+
+You can specify up to four chips (8 channels). If this is not enough,
+just change::
+
+       #define MAXSCC 4
+
+to a higher value.
+
+Example for the BAYCOM USCC:
+----------------------------
+
+::
+
+       chip    1
+       data_a  0x300                   # data port A
+       ctrl_a  0x304                   # control port A
+       data_b  0x301                   # data port B
+       ctrl_b  0x305                   # control port B
+       irq     5                       # IRQ No. 5 (#)
+       board   BAYCOM                  # hardware type (*)
+       #
+       # SCC chip 2
+       #
+       chip    2
+       data_a  0x302
+       ctrl_a  0x306
+       data_b  0x303
+       ctrl_b  0x307
+       board   BAYCOM
+
+An example for a PA0HZP card:
+-----------------------------
+
+::
+
+       chip 1
+       data_a 0x153
+       data_b 0x151
+       ctrl_a 0x152
+       ctrl_b 0x150
+       irq 9
+       pclock 4915200
+       board PA0HZP
+       vector 0x168
+       escc no
+       #
+       #
+       #
+       chip 2
+       data_a 0x157
+       data_b 0x155
+       ctrl_a 0x156
+       ctrl_b 0x154
+       irq 9
+       pclock 4915200
+       board PA0HZP
+       vector 0x168
+       escc no
+
+A DRSI would should probably work with this:
+--------------------------------------------
+(actually: two DRSI cards...)
+
+::
+
+       chip 1
+       data_a 0x303
+       data_b 0x301
+       ctrl_a 0x302
+       ctrl_b 0x300
+       irq 7
+       pclock 4915200
+       board DRSI
+       escc no
+       #
+       #
+       #
+       chip 2
+       data_a 0x313
+       data_b 0x311
+       ctrl_a 0x312
+       ctrl_b 0x310
+       irq 7
+       pclock 4915200
+       board DRSI
+       escc no
+
+Note that you cannot use the on-board baudrate generator off DRSI
+cards. Use "mode dpll" for clock source (see below).
+
+This is based on information provided by Mike Bilow (and verified
+by Paul Helay)
+
+The utility "gencfg"
+--------------------
+
+If you only know the parameters for the PE1CHL driver for DOS,
+run gencfg. It will generate the correct port addresses (I hope).
+Its parameters are exactly the same as the ones you use with
+the "attach scc" command in net, except that the string "init" must
+not appear. Example::
+
+       gencfg 2 0x150 4 2 0 1 0x168 9 4915200
+
+will print a skeleton z8530drv.conf for the OptoSCC to stdout.
+
+::
+
+       gencfg 2 0x300 2 4 5 -4 0 7 4915200 0x10
+
+does the same for the BAYCOM USCC card. In my opinion it is much easier
+to edit scc_config.h...
+
+
+1.2.2 channel configuration
+===========================
+
+The channel definition is divided into three sub sections for each
+channel:
+
+An example for scc0::
+
+       # DEVICE
+
+       device scc0     # the device for the following params
+
+       # MODEM / BUFFERS
+
+       speed 1200              # the default baudrate
+       clock dpll              # clock source:
+                               #       dpll     = normal half duplex operation
+                               #       external = MODEM provides own Rx/Tx clock
+                               #       divider  = use full duplex divider if
+                               #                  installed (1)
+       mode nrzi               # HDLC encoding mode
+                               #       nrzi = 1k2 MODEM, G3RUH 9k6 MODEM
+                               #       nrz  = DF9IC 9k6 MODEM
+                               #
+       bufsize 384             # size of buffers. Note that this must include
+                               # the AX.25 header, not only the data field!
+                               # (optional, defaults to 384)
+
+       # KISS (Layer 1)
+
+       txdelay 36              # (see chapter 1.4)
+       persist 64
+       slot    8
+       tail    8
+       fulldup 0
+       wait    12
+       min     3
+       maxkey  7
+       idle    3
+       maxdef  120
+       group   0
+       txoff   off
+       softdcd on
+       slip    off
+
+The order WITHIN these sections is unimportant. The order OF these
+sections IS important. The MODEM parameters are set with the first
+recognized KISS parameter...
+
+Please note that you can initialize the board only once after boot
+(or insmod). You can change all parameters but "mode" and "clock"
+later with the Sccparam program or through KISS. Just to avoid
+security holes...
+
+(1) this divider is usually mounted on the SCC-PBC (PA0HZP) or not
+    present at all (BayCom). It feeds back the output of the DPLL
+    (digital pll) as transmit clock. Using this mode without a divider
+    installed will normally result in keying the transceiver until
+    maxkey expires --- of course without sending anything (useful).
+
+2. Attachment of a channel by your AX.25 software
+=================================================
+
+2.1 Kernel AX.25
+================
+
+To set up an AX.25 device you can simply type::
+
+       ifconfig scc0 44.128.1.1 hw ax25 dl0tha-7
+
+This will create a network interface with the IP number 44.128.20.107
+and the callsign "dl0tha". If you do not have any IP number (yet) you
+can use any of the 44.128.0.0 network. Note that you do not need
+axattach. The purpose of axattach (like slattach) is to create a KISS
+network device linked to a TTY. Please read the documentation of the
+ax25-utils and the AX.25-HOWTO to learn how to set the parameters of
+the kernel AX.25.
+
+2.2 NOS, NET and TFKISS
+=======================
+
+Since the TTY driver (aka KISS TNC emulation) is gone you need
+to emulate the old behaviour. The cost of using these programs is
+that you probably need to compile the kernel AX.25, regardless of whether
+you actually use it or not. First setup your /etc/ax25/axports,
+for example::
+
+       9k6     dl0tha-9  9600  255 4 9600 baud port (scc3)
+       axlink  dl0tha-15 38400 255 4 Link to NOS
+
+Now "ifconfig" the scc device::
+
+       ifconfig scc3 44.128.1.1 hw ax25 dl0tha-9
+
+You can now axattach a pseudo-TTY::
+
+       axattach /dev/ptys0 axlink
+
+and start your NOS and attach /dev/ptys0 there. The problem is that
+NOS is reachable only via digipeating through the kernel AX.25
+(disastrous on a DAMA controlled channel). To solve this problem,
+configure "rxecho" to echo the incoming frames from "9k6" to "axlink"
+and outgoing frames from "axlink" to "9k6" and start::
+
+       rxecho
+
+Or simply use "kissbridge" coming with z8530drv-utils::
+
+       ifconfig scc3 hw ax25 dl0tha-9
+       kissbridge scc3 /dev/ptys0
+
+
+3. Adjustment and Display of parameters
+=======================================
+
+3.1 Displaying SCC Parameters:
+==============================
+
+Once a SCC channel has been attached, the parameter settings and
+some statistic information can be shown using the param program::
+
+       dl1bke-u:~$ sccstat scc0
+
+       Parameters:
+
+       speed       : 1200 baud
+       txdelay     : 36
+       persist     : 255
+       slottime    : 0
+       txtail      : 8
+       fulldup     : 1
+       waittime    : 12
+       mintime     : 3 sec
+       maxkeyup    : 7 sec
+       idletime    : 3 sec
+       maxdefer    : 120 sec
+       group       : 0x00
+       txoff       : off
+       softdcd     : on
+       SLIP        : off
+
+       Status:
+
+       HDLC                  Z8530           Interrupts         Buffers
+       -----------------------------------------------------------------------
+       Sent       :     273  RxOver :     0  RxInts :   125074  Size    :  384
+       Received   :    1095  TxUnder:     0  TxInts :     4684  NoSpace :    0
+       RxErrors   :    1591                  ExInts :    11776
+       TxErrors   :       0                  SpInts :     1503
+       Tx State   :    idle
+
+
+The status info shown is:
+
+============== ==============================================================
+Sent           number of frames transmitted
+Received       number of frames received
+RxErrors       number of receive errors (CRC, ABORT)
+TxErrors       number of discarded Tx frames (due to various reasons)
+Tx State       status of the Tx interrupt handler: idle/busy/active/tail (2)
+RxOver         number of receiver overruns
+TxUnder                number of transmitter underruns
+RxInts         number of receiver interrupts
+TxInts         number of transmitter interrupts
+EpInts         number of receiver special condition interrupts
+SpInts         number of external/status interrupts
+Size           maximum size of an AX.25 frame (*with* AX.25 headers!)
+NoSpace                number of times a buffer could not get allocated
+============== ==============================================================
+
+An overrun is abnormal. If lots of these occur, the product of
+baudrate and number of interfaces is too high for the processing
+power of your computer. NoSpace errors are unlikely to be caused by the
+driver or the kernel AX.25.
+
+
+3.2 Setting Parameters
+======================
+
+
+The setting of parameters of the emulated KISS TNC is done in the
+same way in the SCC driver. You can change parameters by using
+the kissparms program from the ax25-utils package or use the program
+"sccparam"::
+
+     sccparam <device> <paramname> <decimal-|hexadecimal value>
+
+You can change the following parameters:
+
+===========   =====
+param        value
+===========   =====
+speed         1200
+txdelay       36
+persist       255
+slottime      0
+txtail        8
+fulldup       1
+waittime      12
+mintime       3
+maxkeyup      7
+idletime      3
+maxdefer      120
+group         0x00
+txoff         off
+softdcd       on
+SLIP          off
+===========   =====
+
+
+The parameters have the following meaning:
+
+speed:
+     The baudrate on this channel in bits/sec
+
+     Example: sccparam /dev/scc3 speed 9600
+
+txdelay:
+     The delay (in units of 10 ms) after keying of the
+     transmitter, until the first byte is sent. This is usually
+     called "TXDELAY" in a TNC.  When 0 is specified, the driver
+     will just wait until the CTS signal is asserted. This
+     assumes the presence of a timer or other circuitry in the
+     MODEM and/or transmitter, that asserts CTS when the
+     transmitter is ready for data.
+     A normal value of this parameter is 30-36.
+
+     Example: sccparam /dev/scc0 txd 20
+
+persist:
+     This is the probability that the transmitter will be keyed
+     when the channel is found to be free.  It is a value from 0
+     to 255, and the probability is (value+1)/256.  The value
+     should be somewhere near 50-60, and should be lowered when
+     the channel is used more heavily.
+
+     Example: sccparam /dev/scc2 persist 20
+
+slottime:
+     This is the time between samples of the channel. It is
+     expressed in units of 10 ms.  About 200-300 ms (value 20-30)
+     seems to be a good value.
+
+     Example: sccparam /dev/scc0 slot 20
+
+tail:
+     The time the transmitter will remain keyed after the last
+     byte of a packet has been transferred to the SCC. This is
+     necessary because the CRC and a flag still have to leave the
+     SCC before the transmitter is keyed down. The value depends
+     on the baudrate selected.  A few character times should be
+     sufficient, e.g. 40ms at 1200 baud. (value 4)
+     The value of this parameter is in 10 ms units.
+
+     Example: sccparam /dev/scc2 4
+
+full:
+     The full-duplex mode switch. This can be one of the following
+     values:
+
+     0:   The interface will operate in CSMA mode (the normal
+         half-duplex packet radio operation)
+     1:   Fullduplex mode, i.e. the transmitter will be keyed at
+         any time, without checking the received carrier.  It
+         will be unkeyed when there are no packets to be sent.
+     2:   Like 1, but the transmitter will remain keyed, also
+         when there are no packets to be sent.  Flags will be
+         sent in that case, until a timeout (parameter 10)
+         occurs.
+
+     Example: sccparam /dev/scc0 fulldup off
+
+wait:
+     The initial waittime before any transmit attempt, after the
+     frame has been queue for transmit.  This is the length of
+     the first slot in CSMA mode.  In full duplex modes it is
+     set to 0 for maximum performance.
+     The value of this parameter is in 10 ms units.
+
+     Example: sccparam /dev/scc1 wait 4
+
+maxkey:
+     The maximal time the transmitter will be keyed to send
+     packets, in seconds.  This can be useful on busy CSMA
+     channels, to avoid "getting a bad reputation" when you are
+     generating a lot of traffic.  After the specified time has
+     elapsed, no new frame will be started. Instead, the trans-
+     mitter will be switched off for a specified time (parameter
+     min), and then the selected algorithm for keyup will be
+     started again.
+     The value 0 as well as "off" will disable this feature,
+     and allow infinite transmission time.
+
+     Example: sccparam /dev/scc0 maxk 20
+
+min:
+     This is the time the transmitter will be switched off when
+     the maximum transmission time is exceeded.
+
+     Example: sccparam /dev/scc3 min 10
+
+idle:
+     This parameter specifies the maximum idle time in full duplex
+     2 mode, in seconds.  When no frames have been sent for this
+     time, the transmitter will be keyed down.  A value of 0 is
+     has same result as the fullduplex mode 1. This parameter
+     can be disabled.
+
+     Example: sccparam /dev/scc2 idle off      # transmit forever
+
+maxdefer
+     This is the maximum time (in seconds) to wait for a free channel
+     to send. When this timer expires the transmitter will be keyed
+     IMMEDIATELY. If you love to get trouble with other users you
+     should set this to a very low value ;-)
+
+     Example: sccparam /dev/scc0 maxdefer 240  # 2 minutes
+
+
+txoff:
+     When this parameter has the value 0, the transmission of packets
+     is enable. Otherwise it is disabled.
+
+     Example: sccparam /dev/scc2 txoff on
+
+group:
+     It is possible to build special radio equipment to use more than
+     one frequency on the same band, e.g. using several receivers and
+     only one transmitter that can be switched between frequencies.
+     Also, you can connect several radios that are active on the same
+     band.  In these cases, it is not possible, or not a good idea, to
+     transmit on more than one frequency.  The SCC driver provides a
+     method to lock transmitters on different interfaces, using the
+     "param <interface> group <x>" command.  This will only work when
+     you are using CSMA mode (parameter full = 0).
+
+     The number <x> must be 0 if you want no group restrictions, and
+     can be computed as follows to create restricted groups:
+     <x> is the sum of some OCTAL numbers:
+
+
+     ===  =======================================================
+     200  This transmitter will only be keyed when all other
+         transmitters in the group are off.
+     100  This transmitter will only be keyed when the carrier
+         detect of all other interfaces in the group is off.
+     0xx  A byte that can be used to define different groups.
+         Interfaces are in the same group, when the logical AND
+         between their xx values is nonzero.
+     ===  =======================================================
+
+     Examples:
+
+     When 2 interfaces use group 201, their transmitters will never be
+     keyed at the same time.
+
+     When 2 interfaces use group 101, the transmitters will only key
+     when both channels are clear at the same time.  When group 301,
+     the transmitters will not be keyed at the same time.
+
+     Don't forget to convert the octal numbers into decimal before
+     you set the parameter.
+
+     Example: (to be written)
+
+softdcd:
+     use a software dcd instead of the real one... Useful for a very
+     slow squelch.
+
+     Example: sccparam /dev/scc0 soft on
+
+
+4. Problems
+===========
+
+If you have tx-problems with your BayCom USCC card please check
+the manufacturer of the 8530. SGS chips have a slightly
+different timing. Try Zilog...  A solution is to write to register 8
+instead to the data port, but this won't work with the ESCC chips.
+*SIGH!*
+
+A very common problem is that the PTT locks until the maxkeyup timer
+expires, although interrupts and clock source are correct. In most
+cases compiling the driver with CONFIG_SCC_DELAY (set with
+make config) solves the problems. For more hints read the (pseudo) FAQ
+and the documentation coming with z8530drv-utils.
+
+I got reports that the driver has problems on some 386-based systems.
+(i.e. Amstrad) Those systems have a bogus AT bus timing which will
+lead to delayed answers on interrupts. You can recognize these
+problems by looking at the output of Sccstat for the suspected
+port. If it shows under- and overruns you own such a system.
+
+Delayed processing of received data: This depends on
+
+- the kernel version
+
+- kernel profiling compiled or not
+
+- a high interrupt load
+
+- a high load of the machine --- running X, Xmorph, XV and Povray,
+  while compiling the kernel... hmm ... even with 32 MB RAM ...  ;-)
+  Or running a named for the whole .ampr.org domain on an 8 MB
+  box...
+
+- using information from rxecho or kissbridge.
+
+Kernel panics: please read /linux/README and find out if it
+really occurred within the scc driver.
+
+If you cannot solve a problem, send me
+
+- a description of the problem,
+- information on your hardware (computer system, scc board, modem)
+- your kernel version
+- the output of cat /proc/net/z8530
+
+4. Thor RLC100
+==============
+
+Mysteriously this board seems not to work with the driver. Anyone
+got it up-and-running?
+
+
+Many thanks to Linus Torvalds and Alan Cox for including the driver
+in the Linux standard distribution and their support.
+
+::
+
+       Joerg Reuter    ampr-net: dl1bke@db0pra.ampr.org
+                       AX-25   : DL1BKE @ DB0ABH.#BAY.DEU.EU
+                       Internet: jreuter@yaina.de
+                       WWW     : http://yaina.de/jreuter
index 2d4817f..5497e3a 100644 (file)
@@ -11,6 +11,8 @@ Contents:
    cable/index
    cellular/index
    ethernet/index
+   hamradio/index
+   wan/index
    wifi/index
 
 .. only::  subproject and html
diff --git a/Documentation/networking/device_drivers/wan/index.rst b/Documentation/networking/device_drivers/wan/index.rst
new file mode 100644 (file)
index 0000000..9d9ae94
--- /dev/null
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+
+Classic WAN Device Drivers
+==========================
+
+Contents:
+
+.. toctree::
+   :maxdepth: 2
+
+   z8530book
+
+.. only::  subproject and html
+
+   Indices
+   =======
+
+   * :ref:`genindex`
diff --git a/Documentation/networking/device_drivers/wan/z8530book.rst b/Documentation/networking/device_drivers/wan/z8530book.rst
new file mode 100644 (file)
index 0000000..fea2c40
--- /dev/null
@@ -0,0 +1,256 @@
+=======================
+Z8530 Programming Guide
+=======================
+
+:Author: Alan Cox
+
+Introduction
+============
+
+The Z85x30 family synchronous/asynchronous controller chips are used on
+a large number of cheap network interface cards. The kernel provides a
+core interface layer that is designed to make it easy to provide WAN
+services using this chip.
+
+The current driver only support synchronous operation. Merging the
+asynchronous driver support into this code to allow any Z85x30 device to
+be used as both a tty interface and as a synchronous controller is a
+project for Linux post the 2.4 release
+
+Driver Modes
+============
+
+The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in
+three different modes. Each mode can be applied to an individual channel
+on the chip (each chip has two channels).
+
+The PIO synchronous mode supports the most common Z8530 wiring. Here the
+chip is interface to the I/O and interrupt facilities of the host
+machine but not to the DMA subsystem. When running PIO the Z8530 has
+extremely tight timing requirements. Doing high speeds, even with a
+Z85230 will be tricky. Typically you should expect to achieve at best
+9600 baud with a Z8C530 and 64Kbits with a Z85230.
+
+The DMA mode supports the chip when it is configured to use dual DMA
+channels on an ISA bus. The better cards tend to support this mode of
+operation for a single channel. With DMA running the Z85230 tops out
+when it starts to hit ISA DMA constraints at about 512Kbits. It is worth
+noting here that many PC machines hang or crash when the chip is driven
+fast enough to hold the ISA bus solid.
+
+Transmit DMA mode uses a single DMA channel. The DMA channel is used for
+transmission as the transmit FIFO is smaller than the receive FIFO. it
+gives better performance than pure PIO mode but is nowhere near as ideal
+as pure DMA mode.
+
+Using the Z85230 driver
+=======================
+
+The Z85230 driver provides the back end interface to your board. To
+configure a Z8530 interface you need to detect the board and to identify
+its ports and interrupt resources. It is also your problem to verify the
+resources are available.
+
+Having identified the chip you need to fill in a struct z8530_dev,
+which describes each chip. This object must exist until you finally
+shutdown the board. Firstly zero the active field. This ensures nothing
+goes off without you intending it. The irq field should be set to the
+interrupt number of the chip. (Each chip has a single interrupt source
+rather than each channel). You are responsible for allocating the
+interrupt line. The interrupt handler should be set to
+:c:func:`z8530_interrupt()`. The device id should be set to the
+z8530_dev structure pointer. Whether the interrupt can be shared or not
+is board dependent, and up to you to initialise.
+
+The structure holds two channel structures. Initialise chanA.ctrlio and
+chanA.dataio with the address of the control and data ports. You can or
+this with Z8530_PORT_SLEEP to indicate your interface needs the 5uS
+delay for chip settling done in software. The PORT_SLEEP option is
+architecture specific. Other flags may become available on future
+platforms, eg for MMIO. Initialise the chanA.irqs to &z8530_nop to
+start the chip up as disabled and discarding interrupt events. This
+ensures that stray interrupts will be mopped up and not hang the bus.
+Set chanA.dev to point to the device structure itself. The private and
+name field you may use as you wish. The private field is unused by the
+Z85230 layer. The name is used for error reporting and it may thus make
+sense to make it match the network name.
+
+Repeat the same operation with the B channel if your chip has both
+channels wired to something useful. This isn't always the case. If it is
+not wired then the I/O values do not matter, but you must initialise
+chanB.dev.
+
+If your board has DMA facilities then initialise the txdma and rxdma
+fields for the relevant channels. You must also allocate the ISA DMA
+channels and do any necessary board level initialisation to configure
+them. The low level driver will do the Z8530 and DMA controller
+programming but not board specific magic.
+
+Having initialised the device you can then call
+:c:func:`z8530_init()`. This will probe the chip and reset it into
+a known state. An identification sequence is then run to identify the
+chip type. If the checks fail to pass the function returns a non zero
+error code. Typically this indicates that the port given is not valid.
+After this call the type field of the z8530_dev structure is
+initialised to either Z8530, Z85C30 or Z85230 according to the chip
+found.
+
+Once you have called z8530_init you can also make use of the utility
+function :c:func:`z8530_describe()`. This provides a consistent
+reporting format for the Z8530 devices, and allows all the drivers to
+provide consistent reporting.
+
+Attaching Network Interfaces
+============================
+
+If you wish to use the network interface facilities of the driver, then
+you need to attach a network device to each channel that is present and
+in use. In addition to use the generic HDLC you need to follow some
+additional plumbing rules. They may seem complex but a look at the
+example hostess_sv11 driver should reassure you.
+
+The network device used for each channel should be pointed to by the
+netdevice field of each channel. The hdlc-> priv field of the network
+device points to your private data - you will need to be able to find
+your private data from this.
+
+The way most drivers approach this particular problem is to create a
+structure holding the Z8530 device definition and put that into the
+private field of the network device. The network device fields of the
+channels then point back to the network devices.
+
+If you wish to use the generic HDLC then you need to register the HDLC
+device.
+
+Before you register your network device you will also need to provide
+suitable handlers for most of the network device callbacks. See the
+network device documentation for more details on this.
+
+Configuring And Activating The Port
+===================================
+
+The Z85230 driver provides helper functions and tables to load the port
+registers on the Z8530 chips. When programming the register settings for
+a channel be aware that the documentation recommends initialisation
+orders. Strange things happen when these are not followed.
+
+:c:func:`z8530_channel_load()` takes an array of pairs of
+initialisation values in an array of u8 type. The first value is the
+Z8530 register number. Add 16 to indicate the alternate register bank on
+the later chips. The array is terminated by a 255.
+
+The driver provides a pair of public tables. The z8530_hdlc_kilostream
+table is for the UK 'Kilostream' service and also happens to cover most
+other end host configurations. The z8530_hdlc_kilostream_85230 table
+is the same configuration using the enhancements of the 85230 chip. The
+configuration loaded is standard NRZ encoded synchronous data with HDLC
+bitstuffing. All of the timing is taken from the other end of the link.
+
+When writing your own tables be aware that the driver internally tracks
+register values. It may need to reload values. You should therefore be
+sure to set registers 1-7, 9-11, 14 and 15 in all configurations. Where
+the register settings depend on DMA selection the driver will update the
+bits itself when you open or close. Loading a new table with the
+interface open is not recommended.
+
+There are three standard configurations supported by the core code. In
+PIO mode the interface is programmed up to use interrupt driven PIO.
+This places high demands on the host processor to avoid latency. The
+driver is written to take account of latency issues but it cannot avoid
+latencies caused by other drivers, notably IDE in PIO mode. Because the
+drivers allocate buffers you must also prevent MTU changes while the
+port is open.
+
+Once the port is open it will call the rx_function of each channel
+whenever a completed packet arrived. This is invoked from interrupt
+context and passes you the channel and a network buffer (struct
+sk_buff) holding the data. The data includes the CRC bytes so most
+users will want to trim the last two bytes before processing the data.
+This function is very timing critical. When you wish to simply discard
+data the support code provides the function
+:c:func:`z8530_null_rx()` to discard the data.
+
+To active PIO mode sending and receiving the ``z8530_sync_open`` is called.
+This expects to be passed the network device and the channel. Typically
+this is called from your network device open callback. On a failure a
+non zero error status is returned.
+The :c:func:`z8530_sync_close()` function shuts down a PIO
+channel. This must be done before the channel is opened again and before
+the driver shuts down and unloads.
+
+The ideal mode of operation is dual channel DMA mode. Here the kernel
+driver will configure the board for DMA in both directions. The driver
+also handles ISA DMA issues such as controller programming and the
+memory range limit for you. This mode is activated by calling the
+:c:func:`z8530_sync_dma_open()` function. On failure a non zero
+error value is returned. Once this mode is activated it can be shut down
+by calling the :c:func:`z8530_sync_dma_close()`. You must call
+the close function matching the open mode you used.
+
+The final supported mode uses a single DMA channel to drive the transmit
+side. As the Z85C30 has a larger FIFO on the receive channel this tends
+to increase the maximum speed a little. This is activated by calling the
+``z8530_sync_txdma_open``. This returns a non zero error code on failure. The
+:c:func:`z8530_sync_txdma_close()` function closes down the Z8530
+interface from this mode.
+
+Network Layer Functions
+=======================
+
+The Z8530 layer provides functions to queue packets for transmission.
+The driver internally buffers the frame currently being transmitted and
+one further frame (in order to keep back to back transmission running).
+Any further buffering is up to the caller.
+
+The function :c:func:`z8530_queue_xmit()` takes a network buffer
+in sk_buff format and queues it for transmission. The caller must
+provide the entire packet with the exception of the bitstuffing and CRC.
+This is normally done by the caller via the generic HDLC interface
+layer. It returns 0 if the buffer has been queued and non zero values
+for queue full. If the function accepts the buffer it becomes property
+of the Z8530 layer and the caller should not free it.
+
+The function :c:func:`z8530_get_stats()` returns a pointer to an
+internally maintained per interface statistics block. This provides most
+of the interface code needed to implement the network layer get_stats
+callback.
+
+Porting The Z8530 Driver
+========================
+
+The Z8530 driver is written to be portable. In DMA mode it makes
+assumptions about the use of ISA DMA. These are probably warranted in
+most cases as the Z85230 in particular was designed to glue to PC type
+machines. The PIO mode makes no real assumptions.
+
+Should you need to retarget the Z8530 driver to another architecture the
+only code that should need changing are the port I/O functions. At the
+moment these assume PC I/O port accesses. This may not be appropriate
+for all platforms. Replacing :c:func:`z8530_read_port()` and
+``z8530_write_port`` is intended to be all that is required to port
+this driver layer.
+
+Known Bugs And Assumptions
+==========================
+
+Interrupt Locking
+    The locking in the driver is done via the global cli/sti lock. This
+    makes for relatively poor SMP performance. Switching this to use a
+    per device spin lock would probably materially improve performance.
+
+Occasional Failures
+    We have reports of occasional failures when run for very long
+    periods of time and the driver starts to receive junk frames. At the
+    moment the cause of this is not clear.
+
+Public Functions Provided
+=========================
+
+.. kernel-doc:: drivers/net/wan/z85230.c
+   :export:
+
+Internal Functions
+==================
+
+.. kernel-doc:: drivers/net/wan/z85230.c
+   :internal:
index 0186e27..718e04e 100644 (file)
@@ -20,7 +20,6 @@ Contents:
    ieee802154
    j1939
    kapi
-   z8530book
    msg_zerocopy
    failover
    net_dim
@@ -122,7 +121,6 @@ Contents:
    xfrm_proc
    xfrm_sync
    xfrm_sysctl
-   z8530drv
 
 .. only::  subproject and html
 
diff --git a/Documentation/networking/z8530book.rst b/Documentation/networking/z8530book.rst
deleted file mode 100644 (file)
index fea2c40..0000000
+++ /dev/null
@@ -1,256 +0,0 @@
-=======================
-Z8530 Programming Guide
-=======================
-
-:Author: Alan Cox
-
-Introduction
-============
-
-The Z85x30 family synchronous/asynchronous controller chips are used on
-a large number of cheap network interface cards. The kernel provides a
-core interface layer that is designed to make it easy to provide WAN
-services using this chip.
-
-The current driver only support synchronous operation. Merging the
-asynchronous driver support into this code to allow any Z85x30 device to
-be used as both a tty interface and as a synchronous controller is a
-project for Linux post the 2.4 release
-
-Driver Modes
-============
-
-The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in
-three different modes. Each mode can be applied to an individual channel
-on the chip (each chip has two channels).
-
-The PIO synchronous mode supports the most common Z8530 wiring. Here the
-chip is interface to the I/O and interrupt facilities of the host
-machine but not to the DMA subsystem. When running PIO the Z8530 has
-extremely tight timing requirements. Doing high speeds, even with a
-Z85230 will be tricky. Typically you should expect to achieve at best
-9600 baud with a Z8C530 and 64Kbits with a Z85230.
-
-The DMA mode supports the chip when it is configured to use dual DMA
-channels on an ISA bus. The better cards tend to support this mode of
-operation for a single channel. With DMA running the Z85230 tops out
-when it starts to hit ISA DMA constraints at about 512Kbits. It is worth
-noting here that many PC machines hang or crash when the chip is driven
-fast enough to hold the ISA bus solid.
-
-Transmit DMA mode uses a single DMA channel. The DMA channel is used for
-transmission as the transmit FIFO is smaller than the receive FIFO. it
-gives better performance than pure PIO mode but is nowhere near as ideal
-as pure DMA mode.
-
-Using the Z85230 driver
-=======================
-
-The Z85230 driver provides the back end interface to your board. To
-configure a Z8530 interface you need to detect the board and to identify
-its ports and interrupt resources. It is also your problem to verify the
-resources are available.
-
-Having identified the chip you need to fill in a struct z8530_dev,
-which describes each chip. This object must exist until you finally
-shutdown the board. Firstly zero the active field. This ensures nothing
-goes off without you intending it. The irq field should be set to the
-interrupt number of the chip. (Each chip has a single interrupt source
-rather than each channel). You are responsible for allocating the
-interrupt line. The interrupt handler should be set to
-:c:func:`z8530_interrupt()`. The device id should be set to the
-z8530_dev structure pointer. Whether the interrupt can be shared or not
-is board dependent, and up to you to initialise.
-
-The structure holds two channel structures. Initialise chanA.ctrlio and
-chanA.dataio with the address of the control and data ports. You can or
-this with Z8530_PORT_SLEEP to indicate your interface needs the 5uS
-delay for chip settling done in software. The PORT_SLEEP option is
-architecture specific. Other flags may become available on future
-platforms, eg for MMIO. Initialise the chanA.irqs to &z8530_nop to
-start the chip up as disabled and discarding interrupt events. This
-ensures that stray interrupts will be mopped up and not hang the bus.
-Set chanA.dev to point to the device structure itself. The private and
-name field you may use as you wish. The private field is unused by the
-Z85230 layer. The name is used for error reporting and it may thus make
-sense to make it match the network name.
-
-Repeat the same operation with the B channel if your chip has both
-channels wired to something useful. This isn't always the case. If it is
-not wired then the I/O values do not matter, but you must initialise
-chanB.dev.
-
-If your board has DMA facilities then initialise the txdma and rxdma
-fields for the relevant channels. You must also allocate the ISA DMA
-channels and do any necessary board level initialisation to configure
-them. The low level driver will do the Z8530 and DMA controller
-programming but not board specific magic.
-
-Having initialised the device you can then call
-:c:func:`z8530_init()`. This will probe the chip and reset it into
-a known state. An identification sequence is then run to identify the
-chip type. If the checks fail to pass the function returns a non zero
-error code. Typically this indicates that the port given is not valid.
-After this call the type field of the z8530_dev structure is
-initialised to either Z8530, Z85C30 or Z85230 according to the chip
-found.
-
-Once you have called z8530_init you can also make use of the utility
-function :c:func:`z8530_describe()`. This provides a consistent
-reporting format for the Z8530 devices, and allows all the drivers to
-provide consistent reporting.
-
-Attaching Network Interfaces
-============================
-
-If you wish to use the network interface facilities of the driver, then
-you need to attach a network device to each channel that is present and
-in use. In addition to use the generic HDLC you need to follow some
-additional plumbing rules. They may seem complex but a look at the
-example hostess_sv11 driver should reassure you.
-
-The network device used for each channel should be pointed to by the
-netdevice field of each channel. The hdlc-> priv field of the network
-device points to your private data - you will need to be able to find
-your private data from this.
-
-The way most drivers approach this particular problem is to create a
-structure holding the Z8530 device definition and put that into the
-private field of the network device. The network device fields of the
-channels then point back to the network devices.
-
-If you wish to use the generic HDLC then you need to register the HDLC
-device.
-
-Before you register your network device you will also need to provide
-suitable handlers for most of the network device callbacks. See the
-network device documentation for more details on this.
-
-Configuring And Activating The Port
-===================================
-
-The Z85230 driver provides helper functions and tables to load the port
-registers on the Z8530 chips. When programming the register settings for
-a channel be aware that the documentation recommends initialisation
-orders. Strange things happen when these are not followed.
-
-:c:func:`z8530_channel_load()` takes an array of pairs of
-initialisation values in an array of u8 type. The first value is the
-Z8530 register number. Add 16 to indicate the alternate register bank on
-the later chips. The array is terminated by a 255.
-
-The driver provides a pair of public tables. The z8530_hdlc_kilostream
-table is for the UK 'Kilostream' service and also happens to cover most
-other end host configurations. The z8530_hdlc_kilostream_85230 table
-is the same configuration using the enhancements of the 85230 chip. The
-configuration loaded is standard NRZ encoded synchronous data with HDLC
-bitstuffing. All of the timing is taken from the other end of the link.
-
-When writing your own tables be aware that the driver internally tracks
-register values. It may need to reload values. You should therefore be
-sure to set registers 1-7, 9-11, 14 and 15 in all configurations. Where
-the register settings depend on DMA selection the driver will update the
-bits itself when you open or close. Loading a new table with the
-interface open is not recommended.
-
-There are three standard configurations supported by the core code. In
-PIO mode the interface is programmed up to use interrupt driven PIO.
-This places high demands on the host processor to avoid latency. The
-driver is written to take account of latency issues but it cannot avoid
-latencies caused by other drivers, notably IDE in PIO mode. Because the
-drivers allocate buffers you must also prevent MTU changes while the
-port is open.
-
-Once the port is open it will call the rx_function of each channel
-whenever a completed packet arrived. This is invoked from interrupt
-context and passes you the channel and a network buffer (struct
-sk_buff) holding the data. The data includes the CRC bytes so most
-users will want to trim the last two bytes before processing the data.
-This function is very timing critical. When you wish to simply discard
-data the support code provides the function
-:c:func:`z8530_null_rx()` to discard the data.
-
-To active PIO mode sending and receiving the ``z8530_sync_open`` is called.
-This expects to be passed the network device and the channel. Typically
-this is called from your network device open callback. On a failure a
-non zero error status is returned.
-The :c:func:`z8530_sync_close()` function shuts down a PIO
-channel. This must be done before the channel is opened again and before
-the driver shuts down and unloads.
-
-The ideal mode of operation is dual channel DMA mode. Here the kernel
-driver will configure the board for DMA in both directions. The driver
-also handles ISA DMA issues such as controller programming and the
-memory range limit for you. This mode is activated by calling the
-:c:func:`z8530_sync_dma_open()` function. On failure a non zero
-error value is returned. Once this mode is activated it can be shut down
-by calling the :c:func:`z8530_sync_dma_close()`. You must call
-the close function matching the open mode you used.
-
-The final supported mode uses a single DMA channel to drive the transmit
-side. As the Z85C30 has a larger FIFO on the receive channel this tends
-to increase the maximum speed a little. This is activated by calling the
-``z8530_sync_txdma_open``. This returns a non zero error code on failure. The
-:c:func:`z8530_sync_txdma_close()` function closes down the Z8530
-interface from this mode.
-
-Network Layer Functions
-=======================
-
-The Z8530 layer provides functions to queue packets for transmission.
-The driver internally buffers the frame currently being transmitted and
-one further frame (in order to keep back to back transmission running).
-Any further buffering is up to the caller.
-
-The function :c:func:`z8530_queue_xmit()` takes a network buffer
-in sk_buff format and queues it for transmission. The caller must
-provide the entire packet with the exception of the bitstuffing and CRC.
-This is normally done by the caller via the generic HDLC interface
-layer. It returns 0 if the buffer has been queued and non zero values
-for queue full. If the function accepts the buffer it becomes property
-of the Z8530 layer and the caller should not free it.
-
-The function :c:func:`z8530_get_stats()` returns a pointer to an
-internally maintained per interface statistics block. This provides most
-of the interface code needed to implement the network layer get_stats
-callback.
-
-Porting The Z8530 Driver
-========================
-
-The Z8530 driver is written to be portable. In DMA mode it makes
-assumptions about the use of ISA DMA. These are probably warranted in
-most cases as the Z85230 in particular was designed to glue to PC type
-machines. The PIO mode makes no real assumptions.
-
-Should you need to retarget the Z8530 driver to another architecture the
-only code that should need changing are the port I/O functions. At the
-moment these assume PC I/O port accesses. This may not be appropriate
-for all platforms. Replacing :c:func:`z8530_read_port()` and
-``z8530_write_port`` is intended to be all that is required to port
-this driver layer.
-
-Known Bugs And Assumptions
-==========================
-
-Interrupt Locking
-    The locking in the driver is done via the global cli/sti lock. This
-    makes for relatively poor SMP performance. Switching this to use a
-    per device spin lock would probably materially improve performance.
-
-Occasional Failures
-    We have reports of occasional failures when run for very long
-    periods of time and the driver starts to receive junk frames. At the
-    moment the cause of this is not clear.
-
-Public Functions Provided
-=========================
-
-.. kernel-doc:: drivers/net/wan/z85230.c
-   :export:
-
-Internal Functions
-==================
-
-.. kernel-doc:: drivers/net/wan/z85230.c
-   :internal:
diff --git a/Documentation/networking/z8530drv.rst b/Documentation/networking/z8530drv.rst
deleted file mode 100644 (file)
index d294276..0000000
+++ /dev/null
@@ -1,686 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-.. include:: <isonum.txt>
-
-=========================================================
-SCC.C - Linux driver for Z8530 based HDLC cards for AX.25
-=========================================================
-
-
-This is a subset of the documentation. To use this driver you MUST have the
-full package from:
-
-Internet:
-
-    1. ftp://ftp.ccac.rwth-aachen.de/pub/jr/z8530drv-utils_3.0-3.tar.gz
-
-    2. ftp://ftp.pspt.fi/pub/ham/linux/ax25/z8530drv-utils_3.0-3.tar.gz
-
-Please note that the information in this document may be hopelessly outdated.
-A new version of the documentation, along with links to other important
-Linux Kernel AX.25 documentation and programs, is available on
-http://yaina.de/jreuter
-
-Copyright |copy| 1993,2000 by Joerg Reuter DL1BKE <jreuter@yaina.de>
-
-portions Copyright |copy| 1993 Guido ten Dolle PE1NNZ
-
-for the complete copyright notice see >> Copying.Z8530DRV <<
-
-1. Initialization of the driver
-===============================
-
-To use the driver, 3 steps must be performed:
-
-     1. if compiled as module: loading the module
-     2. Setup of hardware, MODEM and KISS parameters with sccinit
-     3. Attach each channel to the Linux kernel AX.25 with "ifconfig"
-
-Unlike the versions below 2.4 this driver is a real network device
-driver. If you want to run xNOS instead of our fine kernel AX.25
-use a 2.x version (available from above sites) or read the
-AX.25-HOWTO on how to emulate a KISS TNC on network device drivers.
-
-
-1.1 Loading the module
-======================
-
-(If you're going to compile the driver as a part of the kernel image,
- skip this chapter and continue with 1.2)
-
-Before you can use a module, you'll have to load it with::
-
-       insmod scc.o
-
-please read 'man insmod' that comes with module-init-tools.
-
-You should include the insmod in one of the /etc/rc.d/rc.* files,
-and don't forget to insert a call of sccinit after that. It
-will read your /etc/z8530drv.conf.
-
-1.2. /etc/z8530drv.conf
-=======================
-
-To setup all parameters you must run /sbin/sccinit from one
-of your rc.*-files. This has to be done BEFORE you can
-"ifconfig" an interface. Sccinit reads the file /etc/z8530drv.conf
-and sets the hardware, MODEM and KISS parameters. A sample file is
-delivered with this package. Change it to your needs.
-
-The file itself consists of two main sections.
-
-1.2.1 configuration of hardware parameters
-==========================================
-
-The hardware setup section defines the following parameters for each
-Z8530::
-
-    chip    1
-    data_a  0x300                   # data port A
-    ctrl_a  0x304                   # control port A
-    data_b  0x301                   # data port B
-    ctrl_b  0x305                   # control port B
-    irq     5                       # IRQ No. 5
-    pclock  4915200                 # clock
-    board   BAYCOM                  # hardware type
-    escc    no                      # enhanced SCC chip? (8580/85180/85280)
-    vector  0                       # latch for interrupt vector
-    special no                      # address of special function register
-    option  0                       # option to set via sfr
-
-
-chip
-       - this is just a delimiter to make sccinit a bit simpler to
-         program. A parameter has no effect.
-
-data_a
-       - the address of the data port A of this Z8530 (needed)
-ctrl_a
-       - the address of the control port A (needed)
-data_b
-       - the address of the data port B (needed)
-ctrl_b
-       - the address of the control port B (needed)
-
-irq
-       - the used IRQ for this chip. Different chips can use different
-         IRQs or the same. If they share an interrupt, it needs to be
-         specified within one chip-definition only.
-
-pclock  - the clock at the PCLK pin of the Z8530 (option, 4915200 is
-         default), measured in Hertz
-
-board
-       - the "type" of the board:
-
-          =======================  ========
-          SCC type                 value
-          =======================  ========
-          PA0HZP SCC card          PA0HZP
-          EAGLE card               EAGLE
-          PC100 card               PC100
-          PRIMUS-PC (DG9BL) card   PRIMUS
-          BayCom (U)SCC card       BAYCOM
-          =======================  ========
-
-escc
-       - if you want support for ESCC chips (8580, 85180, 85280), set
-         this to "yes" (option, defaults to "no")
-
-vector
-       - address of the vector latch (aka "intack port") for PA0HZP
-         cards. There can be only one vector latch for all chips!
-         (option, defaults to 0)
-
-special
-       - address of the special function register on several cards.
-         (option, defaults to 0)
-
-option  - The value you write into that register (option, default is 0)
-
-You can specify up to four chips (8 channels). If this is not enough,
-just change::
-
-       #define MAXSCC 4
-
-to a higher value.
-
-Example for the BAYCOM USCC:
-----------------------------
-
-::
-
-       chip    1
-       data_a  0x300                   # data port A
-       ctrl_a  0x304                   # control port A
-       data_b  0x301                   # data port B
-       ctrl_b  0x305                   # control port B
-       irq     5                       # IRQ No. 5 (#)
-       board   BAYCOM                  # hardware type (*)
-       #
-       # SCC chip 2
-       #
-       chip    2
-       data_a  0x302
-       ctrl_a  0x306
-       data_b  0x303
-       ctrl_b  0x307
-       board   BAYCOM
-
-An example for a PA0HZP card:
------------------------------
-
-::
-
-       chip 1
-       data_a 0x153
-       data_b 0x151
-       ctrl_a 0x152
-       ctrl_b 0x150
-       irq 9
-       pclock 4915200
-       board PA0HZP
-       vector 0x168
-       escc no
-       #
-       #
-       #
-       chip 2
-       data_a 0x157
-       data_b 0x155
-       ctrl_a 0x156
-       ctrl_b 0x154
-       irq 9
-       pclock 4915200
-       board PA0HZP
-       vector 0x168
-       escc no
-
-A DRSI would should probably work with this:
---------------------------------------------
-(actually: two DRSI cards...)
-
-::
-
-       chip 1
-       data_a 0x303
-       data_b 0x301
-       ctrl_a 0x302
-       ctrl_b 0x300
-       irq 7
-       pclock 4915200
-       board DRSI
-       escc no
-       #
-       #
-       #
-       chip 2
-       data_a 0x313
-       data_b 0x311
-       ctrl_a 0x312
-       ctrl_b 0x310
-       irq 7
-       pclock 4915200
-       board DRSI
-       escc no
-
-Note that you cannot use the on-board baudrate generator off DRSI
-cards. Use "mode dpll" for clock source (see below).
-
-This is based on information provided by Mike Bilow (and verified
-by Paul Helay)
-
-The utility "gencfg"
---------------------
-
-If you only know the parameters for the PE1CHL driver for DOS,
-run gencfg. It will generate the correct port addresses (I hope).
-Its parameters are exactly the same as the ones you use with
-the "attach scc" command in net, except that the string "init" must
-not appear. Example::
-
-       gencfg 2 0x150 4 2 0 1 0x168 9 4915200
-
-will print a skeleton z8530drv.conf for the OptoSCC to stdout.
-
-::
-
-       gencfg 2 0x300 2 4 5 -4 0 7 4915200 0x10
-
-does the same for the BAYCOM USCC card. In my opinion it is much easier
-to edit scc_config.h...
-
-
-1.2.2 channel configuration
-===========================
-
-The channel definition is divided into three sub sections for each
-channel:
-
-An example for scc0::
-
-       # DEVICE
-
-       device scc0     # the device for the following params
-
-       # MODEM / BUFFERS
-
-       speed 1200              # the default baudrate
-       clock dpll              # clock source:
-                               #       dpll     = normal half duplex operation
-                               #       external = MODEM provides own Rx/Tx clock
-                               #       divider  = use full duplex divider if
-                               #                  installed (1)
-       mode nrzi               # HDLC encoding mode
-                               #       nrzi = 1k2 MODEM, G3RUH 9k6 MODEM
-                               #       nrz  = DF9IC 9k6 MODEM
-                               #
-       bufsize 384             # size of buffers. Note that this must include
-                               # the AX.25 header, not only the data field!
-                               # (optional, defaults to 384)
-
-       # KISS (Layer 1)
-
-       txdelay 36              # (see chapter 1.4)
-       persist 64
-       slot    8
-       tail    8
-       fulldup 0
-       wait    12
-       min     3
-       maxkey  7
-       idle    3
-       maxdef  120
-       group   0
-       txoff   off
-       softdcd on
-       slip    off
-
-The order WITHIN these sections is unimportant. The order OF these
-sections IS important. The MODEM parameters are set with the first
-recognized KISS parameter...
-
-Please note that you can initialize the board only once after boot
-(or insmod). You can change all parameters but "mode" and "clock"
-later with the Sccparam program or through KISS. Just to avoid
-security holes...
-
-(1) this divider is usually mounted on the SCC-PBC (PA0HZP) or not
-    present at all (BayCom). It feeds back the output of the DPLL
-    (digital pll) as transmit clock. Using this mode without a divider
-    installed will normally result in keying the transceiver until
-    maxkey expires --- of course without sending anything (useful).
-
-2. Attachment of a channel by your AX.25 software
-=================================================
-
-2.1 Kernel AX.25
-================
-
-To set up an AX.25 device you can simply type::
-
-       ifconfig scc0 44.128.1.1 hw ax25 dl0tha-7
-
-This will create a network interface with the IP number 44.128.20.107
-and the callsign "dl0tha". If you do not have any IP number (yet) you
-can use any of the 44.128.0.0 network. Note that you do not need
-axattach. The purpose of axattach (like slattach) is to create a KISS
-network device linked to a TTY. Please read the documentation of the
-ax25-utils and the AX.25-HOWTO to learn how to set the parameters of
-the kernel AX.25.
-
-2.2 NOS, NET and TFKISS
-=======================
-
-Since the TTY driver (aka KISS TNC emulation) is gone you need
-to emulate the old behaviour. The cost of using these programs is
-that you probably need to compile the kernel AX.25, regardless of whether
-you actually use it or not. First setup your /etc/ax25/axports,
-for example::
-
-       9k6     dl0tha-9  9600  255 4 9600 baud port (scc3)
-       axlink  dl0tha-15 38400 255 4 Link to NOS
-
-Now "ifconfig" the scc device::
-
-       ifconfig scc3 44.128.1.1 hw ax25 dl0tha-9
-
-You can now axattach a pseudo-TTY::
-
-       axattach /dev/ptys0 axlink
-
-and start your NOS and attach /dev/ptys0 there. The problem is that
-NOS is reachable only via digipeating through the kernel AX.25
-(disastrous on a DAMA controlled channel). To solve this problem,
-configure "rxecho" to echo the incoming frames from "9k6" to "axlink"
-and outgoing frames from "axlink" to "9k6" and start::
-
-       rxecho
-
-Or simply use "kissbridge" coming with z8530drv-utils::
-
-       ifconfig scc3 hw ax25 dl0tha-9
-       kissbridge scc3 /dev/ptys0
-
-
-3. Adjustment and Display of parameters
-=======================================
-
-3.1 Displaying SCC Parameters:
-==============================
-
-Once a SCC channel has been attached, the parameter settings and
-some statistic information can be shown using the param program::
-
-       dl1bke-u:~$ sccstat scc0
-
-       Parameters:
-
-       speed       : 1200 baud
-       txdelay     : 36
-       persist     : 255
-       slottime    : 0
-       txtail      : 8
-       fulldup     : 1
-       waittime    : 12
-       mintime     : 3 sec
-       maxkeyup    : 7 sec
-       idletime    : 3 sec
-       maxdefer    : 120 sec
-       group       : 0x00
-       txoff       : off
-       softdcd     : on
-       SLIP        : off
-
-       Status:
-
-       HDLC                  Z8530           Interrupts         Buffers
-       -----------------------------------------------------------------------
-       Sent       :     273  RxOver :     0  RxInts :   125074  Size    :  384
-       Received   :    1095  TxUnder:     0  TxInts :     4684  NoSpace :    0
-       RxErrors   :    1591                  ExInts :    11776
-       TxErrors   :       0                  SpInts :     1503
-       Tx State   :    idle
-
-
-The status info shown is:
-
-============== ==============================================================
-Sent           number of frames transmitted
-Received       number of frames received
-RxErrors       number of receive errors (CRC, ABORT)
-TxErrors       number of discarded Tx frames (due to various reasons)
-Tx State       status of the Tx interrupt handler: idle/busy/active/tail (2)
-RxOver         number of receiver overruns
-TxUnder                number of transmitter underruns
-RxInts         number of receiver interrupts
-TxInts         number of transmitter interrupts
-EpInts         number of receiver special condition interrupts
-SpInts         number of external/status interrupts
-Size           maximum size of an AX.25 frame (*with* AX.25 headers!)
-NoSpace                number of times a buffer could not get allocated
-============== ==============================================================
-
-An overrun is abnormal. If lots of these occur, the product of
-baudrate and number of interfaces is too high for the processing
-power of your computer. NoSpace errors are unlikely to be caused by the
-driver or the kernel AX.25.
-
-
-3.2 Setting Parameters
-======================
-
-
-The setting of parameters of the emulated KISS TNC is done in the
-same way in the SCC driver. You can change parameters by using
-the kissparms program from the ax25-utils package or use the program
-"sccparam"::
-
-     sccparam <device> <paramname> <decimal-|hexadecimal value>
-
-You can change the following parameters:
-
-===========   =====
-param        value
-===========   =====
-speed         1200
-txdelay       36
-persist       255
-slottime      0
-txtail        8
-fulldup       1
-waittime      12
-mintime       3
-maxkeyup      7
-idletime      3
-maxdefer      120
-group         0x00
-txoff         off
-softdcd       on
-SLIP          off
-===========   =====
-
-
-The parameters have the following meaning:
-
-speed:
-     The baudrate on this channel in bits/sec
-
-     Example: sccparam /dev/scc3 speed 9600
-
-txdelay:
-     The delay (in units of 10 ms) after keying of the
-     transmitter, until the first byte is sent. This is usually
-     called "TXDELAY" in a TNC.  When 0 is specified, the driver
-     will just wait until the CTS signal is asserted. This
-     assumes the presence of a timer or other circuitry in the
-     MODEM and/or transmitter, that asserts CTS when the
-     transmitter is ready for data.
-     A normal value of this parameter is 30-36.
-
-     Example: sccparam /dev/scc0 txd 20
-
-persist:
-     This is the probability that the transmitter will be keyed
-     when the channel is found to be free.  It is a value from 0
-     to 255, and the probability is (value+1)/256.  The value
-     should be somewhere near 50-60, and should be lowered when
-     the channel is used more heavily.
-
-     Example: sccparam /dev/scc2 persist 20
-
-slottime:
-     This is the time between samples of the channel. It is
-     expressed in units of 10 ms.  About 200-300 ms (value 20-30)
-     seems to be a good value.
-
-     Example: sccparam /dev/scc0 slot 20
-
-tail:
-     The time the transmitter will remain keyed after the last
-     byte of a packet has been transferred to the SCC. This is
-     necessary because the CRC and a flag still have to leave the
-     SCC before the transmitter is keyed down. The value depends
-     on the baudrate selected.  A few character times should be
-     sufficient, e.g. 40ms at 1200 baud. (value 4)
-     The value of this parameter is in 10 ms units.
-
-     Example: sccparam /dev/scc2 4
-
-full:
-     The full-duplex mode switch. This can be one of the following
-     values:
-
-     0:   The interface will operate in CSMA mode (the normal
-         half-duplex packet radio operation)
-     1:   Fullduplex mode, i.e. the transmitter will be keyed at
-         any time, without checking the received carrier.  It
-         will be unkeyed when there are no packets to be sent.
-     2:   Like 1, but the transmitter will remain keyed, also
-         when there are no packets to be sent.  Flags will be
-         sent in that case, until a timeout (parameter 10)
-         occurs.
-
-     Example: sccparam /dev/scc0 fulldup off
-
-wait:
-     The initial waittime before any transmit attempt, after the
-     frame has been queue for transmit.  This is the length of
-     the first slot in CSMA mode.  In full duplex modes it is
-     set to 0 for maximum performance.
-     The value of this parameter is in 10 ms units.
-
-     Example: sccparam /dev/scc1 wait 4
-
-maxkey:
-     The maximal time the transmitter will be keyed to send
-     packets, in seconds.  This can be useful on busy CSMA
-     channels, to avoid "getting a bad reputation" when you are
-     generating a lot of traffic.  After the specified time has
-     elapsed, no new frame will be started. Instead, the trans-
-     mitter will be switched off for a specified time (parameter
-     min), and then the selected algorithm for keyup will be
-     started again.
-     The value 0 as well as "off" will disable this feature,
-     and allow infinite transmission time.
-
-     Example: sccparam /dev/scc0 maxk 20
-
-min:
-     This is the time the transmitter will be switched off when
-     the maximum transmission time is exceeded.
-
-     Example: sccparam /dev/scc3 min 10
-
-idle:
-     This parameter specifies the maximum idle time in full duplex
-     2 mode, in seconds.  When no frames have been sent for this
-     time, the transmitter will be keyed down.  A value of 0 is
-     has same result as the fullduplex mode 1. This parameter
-     can be disabled.
-
-     Example: sccparam /dev/scc2 idle off      # transmit forever
-
-maxdefer
-     This is the maximum time (in seconds) to wait for a free channel
-     to send. When this timer expires the transmitter will be keyed
-     IMMEDIATELY. If you love to get trouble with other users you
-     should set this to a very low value ;-)
-
-     Example: sccparam /dev/scc0 maxdefer 240  # 2 minutes
-
-
-txoff:
-     When this parameter has the value 0, the transmission of packets
-     is enable. Otherwise it is disabled.
-
-     Example: sccparam /dev/scc2 txoff on
-
-group:
-     It is possible to build special radio equipment to use more than
-     one frequency on the same band, e.g. using several receivers and
-     only one transmitter that can be switched between frequencies.
-     Also, you can connect several radios that are active on the same
-     band.  In these cases, it is not possible, or not a good idea, to
-     transmit on more than one frequency.  The SCC driver provides a
-     method to lock transmitters on different interfaces, using the
-     "param <interface> group <x>" command.  This will only work when
-     you are using CSMA mode (parameter full = 0).
-
-     The number <x> must be 0 if you want no group restrictions, and
-     can be computed as follows to create restricted groups:
-     <x> is the sum of some OCTAL numbers:
-
-
-     ===  =======================================================
-     200  This transmitter will only be keyed when all other
-         transmitters in the group are off.
-     100  This transmitter will only be keyed when the carrier
-         detect of all other interfaces in the group is off.
-     0xx  A byte that can be used to define different groups.
-         Interfaces are in the same group, when the logical AND
-         between their xx values is nonzero.
-     ===  =======================================================
-
-     Examples:
-
-     When 2 interfaces use group 201, their transmitters will never be
-     keyed at the same time.
-
-     When 2 interfaces use group 101, the transmitters will only key
-     when both channels are clear at the same time.  When group 301,
-     the transmitters will not be keyed at the same time.
-
-     Don't forget to convert the octal numbers into decimal before
-     you set the parameter.
-
-     Example: (to be written)
-
-softdcd:
-     use a software dcd instead of the real one... Useful for a very
-     slow squelch.
-
-     Example: sccparam /dev/scc0 soft on
-
-
-4. Problems
-===========
-
-If you have tx-problems with your BayCom USCC card please check
-the manufacturer of the 8530. SGS chips have a slightly
-different timing. Try Zilog...  A solution is to write to register 8
-instead to the data port, but this won't work with the ESCC chips.
-*SIGH!*
-
-A very common problem is that the PTT locks until the maxkeyup timer
-expires, although interrupts and clock source are correct. In most
-cases compiling the driver with CONFIG_SCC_DELAY (set with
-make config) solves the problems. For more hints read the (pseudo) FAQ
-and the documentation coming with z8530drv-utils.
-
-I got reports that the driver has problems on some 386-based systems.
-(i.e. Amstrad) Those systems have a bogus AT bus timing which will
-lead to delayed answers on interrupts. You can recognize these
-problems by looking at the output of Sccstat for the suspected
-port. If it shows under- and overruns you own such a system.
-
-Delayed processing of received data: This depends on
-
-- the kernel version
-
-- kernel profiling compiled or not
-
-- a high interrupt load
-
-- a high load of the machine --- running X, Xmorph, XV and Povray,
-  while compiling the kernel... hmm ... even with 32 MB RAM ...  ;-)
-  Or running a named for the whole .ampr.org domain on an 8 MB
-  box...
-
-- using information from rxecho or kissbridge.
-
-Kernel panics: please read /linux/README and find out if it
-really occurred within the scc driver.
-
-If you cannot solve a problem, send me
-
-- a description of the problem,
-- information on your hardware (computer system, scc board, modem)
-- your kernel version
-- the output of cat /proc/net/z8530
-
-4. Thor RLC100
-==============
-
-Mysteriously this board seems not to work with the driver. Anyone
-got it up-and-running?
-
-
-Many thanks to Linus Torvalds and Alan Cox for including the driver
-in the Linux standard distribution and their support.
-
-::
-
-       Joerg Reuter    ampr-net: dl1bke@db0pra.ampr.org
-                       AX-25   : DL1BKE @ DB0ABH.#BAY.DEU.EU
-                       Internet: jreuter@yaina.de
-                       WWW     : http://yaina.de/jreuter
index 43e7c9a..bdde85c 100644 (file)
@@ -18902,7 +18902,7 @@ L:      linux-hams@vger.kernel.org
 S:     Maintained
 W:     http://yaina.de/jreuter/
 W:     http://www.qsl.net/dl1bke/
-F:     Documentation/networking/z8530drv.rst
+F:     Documentation/networking/device_drivers/hamradio/z8530drv.rst
 F:     drivers/net/hamradio/*scc.c
 F:     drivers/net/hamradio/z8530.h
 
index 70f754a..cde8b48 100644 (file)
@@ -84,8 +84,9 @@ config SCC
        help
          These cards are used to connect your Linux box to an amateur radio
          in order to communicate with other computers. If you want to use
-         this, read <file:Documentation/networking/z8530drv.rst> and the
-         AX25-HOWTO, available from
+         this, read
+         <file:Documentation/networking/device_drivers/hamradio/z8530drv.rst>
+         and the AX25-HOWTO, available from
          <http://www.tldp.org/docs.html#howto>. Also make sure to say Y
          to "Amateur Radio AX.25 Level 2" support.
 
@@ -98,7 +99,8 @@ config SCC_DELAY
        help
          Say Y here if you experience problems with the SCC driver not
          working properly; please read
-         <file:Documentation/networking/z8530drv.rst> for details.
+         <file:Documentation/networking/device_drivers/hamradio/z8530drv.rst>
+         for details.
 
          If unsure, say N.
 
index 33fdd55..1e91587 100644 (file)
@@ -7,7 +7,7 @@
  *            ------------------
  *
  * You can find a subset of the documentation in 
- * Documentation/networking/z8530drv.rst.
+ * Documentation/networking/device_drivers/wan/z8530drv.rst.
  */
 
 /*